前沿综述:人工细胞的过去、现在、未来
译者按
“我们能人工合成一个细胞吗?Can a cell be artificially synthesized ?”——这是2021年《科学》期刊新发布的世界最前沿的125个重大科学问题之一。
“生命如何起源?非生命的无机物质如何能通过复杂系统涌现为有机生命体?人类有没有能力从头创造生命?我们是否能掌控细胞这样的复杂系统?”——笔者相信,这是大量科研同行和热心读者所感兴趣的问题。
近年来,随着分子生物学和结构生物学的发展,我们对细胞复杂系统的组成、结构、功能和特征等认识已有了巨大飞跃。当科学家“庖丁解牛”般把细胞拆成五花八门的“零件”时,手握各种生命基本组件的他们,又将如何按照自己对细胞和生命复杂系统的理解,重组出一个人工细胞?
“生与死的界限是什么?”当我们试图用毫无生机的化学分子组装出一个生机勃勃的人工细胞之时,“生命是什么”的生物学哲学问题会将我们困住吗?这是一次化学家和合成生物学家携手发起的向死而生的挑战:
(1)Plan A:自下而上策略,死→生
——化学家从“死的此岸”出发,从分子开始组装,逐步积累系统复杂度,用自组装突破死与生的界面。
(2)Plan B:自上而下策略,生→死
——合成生物学家则从“生的彼岸”启程,从活细胞开始删减要素,逐步剔除系统复杂度,用基因编辑勾勒出生命的极限。
或许突然有一天,他们会在旅途中顺利会师,披荆斩棘,开辟大道。
这是一段“从零开始的生命创造”之旅,我们已通过劳动创造出了各式各样的机器设备(电脑、飞机、火箭),以及繁荣的社会和文明。笔者相信,我们在未来也一定可以自由地创造生命复杂系统。那么,构建人工细胞的研究将会是未来人类创造生命之旅中的第一座险峰。
若能感受到人类凭借自己的智慧和力量从头创造出一个真正细胞之困难,或许能让我们更加科学地理解到自己生命的复杂系统的宝贵、来之不易,以及“拥有全身上下的无数细胞为我们辛勤工作”是一件多么幸福的事情。
此次翻译的综述,介绍了人工细胞领域的“昨天今天明天”。虽然我们离真正地创造一个细胞还很遥远,但在旅途之中,人工细胞研究或许会催生出广泛的应用,甚至成为“下一个风口”“下一代生物智能材料”也说不定哦。毕竟,“造物致知,造物致用”,“与其期待未来,不如自己创造”。
关键词:人工细胞,生命起源,生命复杂系统
Wentao Jiang, Ziyu Wu, Zheng Gao, Mimi Wan, Min Zhou等 | 作者
余凡尘 | 译者
邓一雪 | 编辑
论文题目:
Artificial Cells: Past, Present and Future
论文链接:https://pubs.acs.org/doi/10.1021/acsnano.2c06104?ref=PDF
摘要
一、人工细胞的发展历程
二、人工细胞的研究现状
三、人工细胞的前景
摘要
摘要
图1. 人工细胞的产生、现有特性和应用,以及未来潜在的方向。图片是在 Figdraw [ www.figdraw.com]的帮助下制作的。
图2. 通过自上而下和自下而上方法构建人工细胞。经参考许可转载 [3]. 版权所有 2016 Elsevier。
一、人工细胞的发展历程
一、人工细胞的发展历程
图3. 基于脂质、天然细胞和聚合物的人工细胞的图像。(A)在叉指电极表面形成的1,2-二油酰基-sn-甘油-3-磷酸胆(DOPC)GUV的荧光图像和放大视图。比例尺,100 μm。经参考许可转载 [55]. 版权所有 2012 皇家化学学会。(B) 由天然HeLa细胞膜生成的人工细胞的荧光图像,其膜由荧光素标记的单链DNA所包围。比例尺 10 μm。根据知识共享署名许可 [CC BY 4.0] ref [31]. 版权所有 2019 美国科学促进会。(C) 由聚合物 [尼龙] 材料膜组成的人工细胞的显微图像,其含有红细胞裂解物。经参考许可转载 [44]. 版权所有 1964 美国科学促进会。
图5. 基于JCVI自上而下构建可自复制的人工细胞的开发过程。经参考许可转载 [82]. 版权所有 2021 爱思唯尔。
二、人工细胞的研究现状
二、人工细胞的研究现状
1. 人工细胞的构建
1.1. 脂质/聚合物囊泡人工细胞
图6. GUV构建方法示意图。(A)温和水化法(gentle hydration method)。(B)电形成法。通过向水化的两亲性薄膜施加交流电来形成囊泡。(C)相转移法。油滴中的水被单层包覆,然后通过油-水界面转移到水相中,产生具有双层膜密闭结构的巨型囊泡。(D)微流控法。在微毛细管装置中形成稳定的水/油/水的乳液,萃取中间油相溶剂,形成巨型囊泡。经参考许可改编 [39]. 版权所有 2022 皇家化学学会。
1.2. 无机胶体人工细胞
图7. 示意图,胶体囊泡、凝聚体和MOF衍生的人工细胞构建方法。(A)无机胶体人工细胞自组装过程示意图。先通过离心将含水颗粒吸附到溶液表面,然后转移到溶液表面。经[87]许可改编. 版权所有 2002 美国科学促进会。(B) 凝聚体人工细胞的结构示意图。阴离子DNA和阳离子DEAE葡聚糖的混合物发生液-液相分离,并形成凝聚液滴;添加DPPC的乙醇溶液以封装凝聚体。经 [148]许可改编. 版权所有 2021 美国化学学会。(C) MOF人工细胞的结构图。MOF细胞器由Zn2+、MEIM和酶组成,并被MPN所封装,而该人工细胞又被水包油乳液给包裹起来。经 [79]许可转载. 版权所有 2019 Wiley-VCH。
1.3. MOF人工细胞
1.4. 凝聚体人工细胞
2. 人工细胞的(功能、行为)特性
2.1. 能量生产
图8. 示意图,由接枝共聚物膜和混合的接枝共聚物/脂质膜组成的人工细胞,其中含有重组的ATP合成酶和末端氧化酶,故有利用化学能驱动ATP产生的能力。经参考许可转载 [153]. 版权所有 2017 美国化学学会。
2.2. 生长、形态变化和分裂
图9. 囊泡生长和分裂示意图。(A) 通过将脂肪酸胶束引入囊泡的外部环境,来诱导脂肪酸囊泡生长。经参考许可改编 [164]. 版权所有 2021 美国化学学会。(B) 通过装载棕榈酰CoA(P-CoA)、甘油-3-磷酸酰基转移酶(G3P-AT)和甘油-3-磷酸(1P-G3P), 在巨型囊泡中产生了小型囊泡。经参考许可转载 [160]. 版权所有 1996 爱思唯尔。(C)大分子通过与生长中的膜相互作用,控制人工细胞的分裂。经参考许可改编 [171]. 版权所有 2012 美国国家科学院。(D) FtsZ和FtsA完全收缩形成Z环,并使人工细胞分裂。经参考许可改编 [164]. 版权所有 2021 美国化学学会。
2.3. 跨膜运输
图10. 用于跨膜转运的合成蛋白质、孔和通道示意图。(A)在非酶促磷脂膜的形成过程中,跨膜蛋白自发重构。方法是用合成的溶血磷脂酰胆碱类似物溶解蛋白质,溶血磷脂酰胆碱类似物作为洗涤剂可与蛋白质形成胶束溶解的蛋白质复合物,再添加活性烷基前体,随后其偶联反应导致蛋白质脂质体的自发形成。经 [185] 许可转载. 版权所有 2015 Wiley-VCH。(B)合成的生物孔模拟物,将其插入脂质膜可增加渗透性。经[186]许可转载. 版权所有 2011 英国皇家化学会。(C) 将DNA折纸插入膜上,形成特定直径孔洞的离子通道,圆柱体代表DNA双螺旋结构域,红色表示跨膜链段;带有橙色椭圆的橙色链表示胆固醇修饰的寡核苷酸与单链DNA适配体的杂交。经[188]许可改编. 版权所有 2012 美国科学促进会。
2.4. 环境响应、动力和趋化性
译注:此处疑原文有误,有所修改。原文为 covalently grafting pH-responsive copolymers onto water dispersion copolymers from silica nanoparticles;译者以为后半句应为:from water dispersion copolymers onto silica nanoparticles。
3. 人工细胞的应用
3.1. 封装和反应的容器
图12. 人工细胞作为封装和反应容器的示意图。(A) DPPC囊泡中AMC水解淀粉的示意图。根据参考知识共享 CC BY 许可复制 [202]. 版权所有 2007 Springer Nature。(B)基于DNA的分子信号转导系统。配备了ATP驱动型DNA纳米门卫的人工细胞膜,它封装了一个包含不同信号网络模块的细胞。根据参考知识共享 CC BY 许可复制 [190]. 版权所有 2020 Springer Nature。(C)多区室囊泡的级联反应。经[125]许可转载. 版权所有 2017 英国皇家化学会。
图13. 能合成蛋白质、DNA和RNA的人工细胞图像。(A) 经过数小时后,在囊泡聚集体(左)、单个囊泡(中)和二联体(右)中,α-溶血素与eGFP融合。大肠杆菌提取物和 pIVEX2.3 d-α-溶血素-eGFP质粒(0.5 nm)被封装在处于营养物溶液环境的囊泡中。比例尺20 微米。经[21]许可转载. 版权所有 2004 美国国家科学院。(B) 荧光图像(左)和示意图(右),表达GFP蛋白的酶和基因被封装在GUV中。经[207]许可转载. 版权所有 2012 Wiley-VCH。(C) 在GUV中进行T7 RNA聚合酶催化的RNA合成。(a) DIC;(b–f)荧光模式。比例尺 50 微米。经[208]许可转载. 版权所有 2002 Wiley-VCH。(D) GUVs中的DNA扩增。方法是使用水化法制备含有PCR试剂的GUVs水分散液,缓冲溶液含有DNA模板、引物、荧光标记SYBR Green I、三磷酸脱氧核苷、DNA聚合酶和Mg2+。经[166]许可改编. 版权所有 2011 自然出版集团。
3.2. 物质和信息交换的载体
图14. 作为物质交换载体的人工细胞图像。(A) 由LPE/LPK复合物驱动的脂质体膜融合。(a) 脂质化寡肽LPE和LP的空间填充模型,组成结构是DOPE尾部通过PEG12连接到螺旋寡肽E和K上。(b) 当携带LPE(1)的脂质体与携带LPK(2)的脂质体混合时,(通过E/K)形成线团,促成脂质体融合。经[217]许可转载. 版权所有 2009 Wiley-VCH。(B) 囊泡与脂质膜发生对接时的模型。脂质膜融合是由一对互补的膜锚定DNA诱导的。两个互补DNA的反向平行杂交促使囊泡和脂质膜维持紧密接触。经[218]许可转载. 版权所有 2009 美国国家科学院 (C) DNA 介导一对脂质囊泡融合的可能阶段。混合后,DNA杂交使囊泡对接在一起,然后发生半融合。两个囊泡合并,内容物混合,实现完全融合。经[218]许可转载. 版权所有 2009 美国国家科学院 (D) SEM图像,具有可控纳米通道的人工细胞。比例尺,2 微米。经[83]许可转载。版权所有 2021 Springer Nature。
图15. 人工细胞作为信息交换载体示意图。(A) 充满GOx的胶体囊泡会产生过氧化氢,从而诱导第二个胶体囊泡的NIPAM壳聚合(生成PNIPAM)。PNIPAM胶体囊泡的渗透性具有热响应特性,且会影响内部反应的动力学。经[219]许可转载. 版权所有 2016 Wiley-VCH。(B) 由α-溶血素(α-HL)蛋白孔连接的囊泡界面膜(VIM)系统。Ca2+可通过未被通道阻滞剂覆盖的孔选择性地转移材料。根据[220]的 Creative Commons CC BY License 分发. 版权所有 2018 Springer Nature。(C) 基于GMV的人工信号转导系统的设计和构建。来自其中一个人工细胞群落(GMVb)的类膜蛋白激活物,可刺激另一个人工细胞群落(GMVa)上的受体,释放出ssDNA信使,导致合成跨膜通道的激活和离子的流入,从而触发封装在GMVa中的信号响应。经[80]许可转载. 版权所有 2021 美国化学学会。
3.3. 医疗的应用
图16. 人工细胞作为药物递送系统的示意图。(A) 靶向肿瘤的磁性人工细胞。经[226]许可转载. 版权所有 2013 Walter de Gruyter and Company。(B) 红细胞膜载药人工细胞的结构和功能图。(a) 设计和构建由含有血红蛋白的红细胞膜和含有GOx的凝聚体组成的人工细胞。(b) 在葡萄糖和羟基脲存在下,人工细胞不断产生NO并诱导血管舒张。经[81]许可转载. 版权所有 2020 Springer Nature。(C) 肿瘤靶向人工细胞的合成,及其与PTT/PDT联合治疗肿瘤的效果。该人工细胞是由包裹原卟啉IX的癌细胞膜碎片合成的,其中原卟啉IX还包裹着金属离子单宁酸。在磁共振成像、光声成像和光热成像的指导下,人工细胞在肿瘤中靶向聚集。经[228]许可转载. 版权所有 2020 美国化学学会。
图17. 人工细胞作为天然细胞的替代物示意图。(A) PolyHb-SODCAT-CA的示意图;其浓度可达红细胞酶的六倍。根据[275]的 Creative Commons Attribution License [CC BY 4.0] 分发. 版权所有 2019 Informa UK Limited,作为 Taylor & Francis Group 进行交易。(B)人工β细胞的合成,其对高血糖环境的感知,胰岛素的合成和分泌,以及对哺乳动物细胞中葡萄糖摄取的诱导。经[84]许可转载. 版权所有 2022 Wiley-VCH。(C) 模拟中性粒细胞的人工细胞,其制造过程、生物反应过程、拟提出的机制和各种生物医学应用。经[102]许可转载. 版权所有 2019 Wiley-VCH。(D) 人工M2巨噬细胞,ChS在炎症区域的可控释放。经[243]许可转载. 版权所有 2021 爱思唯尔。
图18. 用于酶和基因疗法的人工细胞示意图。(A) 含有PolyHb酪氨酸酶的人工细胞。这种人工细胞是由血红蛋白和酪氨酸酶与戊二醛交联,并用聚乳酸包裹而成。这种人工细胞可以通过将酪氨酸转化为左旋多巴,并局部降低酪氨酸水平,来改变肿瘤微环境。根据[247]的 Creative Commons Attribution License [CC BY 4.0] 分发. 版权所有 2016 希拉里斯。(B)外泌体-脂质体杂化的人工细胞,其中封装了CRISPR-Cas9质粒。经[260]许可改编. 版权所有 2021 英国皇家化学会。
图 19. 人工细胞包裹天然细胞。根据[275]的 Creative Commons Attribution License [CC BY 4.0] 分发. 版权所有 2019 Informa UK Limited,作为 Taylor & Francis Group 进行交易。
三、人工细胞的前景
三、人工细胞的前景
参考文献
[1] Kaneko, K. Life: An Introduction to Complex Systems Biology; Springer: Heidelberg, Germany, 2006; p 111.
[2] Garrett, W. S. From Cell Biology to the Microbiome: An Intentional Infinite Loop. J. Cell Biol. 2015, 210, 7−8.
[3] Xu, C.; Hu, S.; Chen, X. Artificial Cells: From Basic Science to Applications. Mater. Today [Kidlington] 2016, 19, 516−532.
[4] Pohorille, A.; Deamer, D. Artificial Cells: Prospects for Biotechnology. Trends Biotechnol. 2002, 20, 123−128.
[5] Szostak, J. W.; Bartel, D. P.; Luisi, P. L. Synthesizing Life. Nature 2001, 409, 387−390.
[6] Ding, Y.; Wu, F.; Tan, C. Synthetic Biology: A Bridge between Artificial and Natural Cells. Life 2014, 4, 1092−1116.
[7] Hammer, D. A.; Kamat, N. P. Towards an Artificial Cell. FEBS Lett. 2012, 586, 2882−2890.
[8] Tian, L.; Li, M.; Patil, A. J.; Drinkwater, B. W.; Mann, S. Artificial Morphogen-Mediated Differentiation in Synthetic Protocells. Nat. Commun. 2019, 10, 3321.
[9] Jeong, S.; Nguyen, H.-T.; Kim, C.-H.; Ly, M.-N.; Shin, K. Toward Artificial Cells: Novel Advances in Energy Conversion and Cellular Motility. Adv. Funct. Mater. 2020, 30, 1907182.
[10] Saraniti, M. Artificial Cells: Designing Biomimetic Nanomachines. Nat. Nanotechnol. 2008, 3, 647−648.
[11] Luisi, P. L.; Walde, P.; Oberholzer, T. Lipid Vesicles as Possible Intermediates in The Origin Of Life. Curr. Opin. Colloid Interface Sci. 1999, 4, 33−39.
[12] Glass, J. I.; Assad-Garcia, N.; Alperovich, N.; Yooseph, S.; Lewis, M. R.; Maruf, M.; Hutchison, C. A., 3rd; Smith, H. O.; Venter, J. C. Essential Genes of a Minimal Bacterium. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 425−430.
[13] Lartigue, C.; Glass, J. I.; Alperovich, N.; Pieper, R.; Parmar, P. P.; Hutchison, C. A., 3rd; Smith, H. O.; Venter, J. C. Genome Transplantation in Bacteria: Changing One Species to Another. Science 2007, 317, 632−638.
[14] Miller, D. M.; Gulbis, J. M. Engineering Protocells: Prospects for Self-Assembly and Nanoscale Production-Lines. Life 2015, 5, 1019−1053.
[15] Mann, S. Systems of Creation: The Emergence of Life from Nonliving Matter. Acc. Chem. Res. 2012, 45, 2131−2141.
[16] Chang, T. M. S. Haemoglobin Corpuscles. Report of a research project for Honours Physiology, Medical Library, McGill University. Biomater. Artif. Cells Artif. Organs 1957, 16, 1−9.
[17] Jelinek, R.; Kolusheva, S. Membrane Interactions of HostDefense Peptides Studied in Model Systems. Curr. Protein Pept. Sci. 2005, 6, 103−114.
[18] Reeves, J. P.; Dowben, R. M. Formation and Properties of Thin-Walled Phospholipid Vesicles. J. Cell. Physiol. 1969, 73, 49−60.
[19] Szoka, F., Jr.; Papahadjopoulos, D. Comparative Properties and Methods of Preparation of Lipid Vesicles [Liposomes]. Annu. Rev. Biophys. 1980, 9, 467−508.
[20] Picon, A.; Serrano, C.; Gaya, P.; Medina, M.; Nuñez, M. The Effect of Liposome-Encapsulated Cyprosins on Manchego Cheese Ripening. J. Dairy Sci. 1996, 79, 1699−1705.
[21] Noireaux, V.; Libchaber, A. A Vesicle Bioreactor as a Step Toward an Artificial Cell Assembly. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 17669−17674.
[22] Elani, Y.; Law, R. V.; Ces, O. Vesicle-Based Artificial Cells as Chemical Microreactors with Spatially Segregated Reaction Pathways. Nat. Commun. 2014, 5, 5305.
[23] Gardner, P. M.; Winzer, K.; Davis, B. G. Sugar Synthesis in A Protocellular Model Leads to a Cell Signalling Response in Bacteria. Nat. Chem. 2009, 1, 377−383.
[24] Lentini, R.; Santero, S. P.; Chizzolini, F.; Cecchi, D.; Fontana, J.; Marchioretto, M.; Del Bianco, C.; Terrell, J. L.; Spencer, A. C.; Martini, L.; Forlin, M.; Assfalg, M.; Serra, M. D.; Bentley, W. E.; Mansy, S. S. Integrating Artificial with Natural Cells to Translate Chemical Messages That Direct E. Coli Behaviour. Nat. Commun. 2014, 5, 4012.
[25] Adamala, K.; Szostak, J. W. Competition Between Model Protocells Driven by an Encapsulated Catalyst. Nat. Chem. 2013, 5, 495−501.
[26] Chen, C. C.; Wilson, T. H. The Phospholipid Requirement for Activity of the Lactose Carrier of Escherichia coli. J. Biol. Chem. 1984, 259, 10150−10158.
[27] Lee, K. Y.; Park, S.-J.; Lee, K. A.; Kim, S.-H.; Kim, H.; Meroz, Y.; Mahadevan, L.; Jung, K.-H.; Ahn, T. K.; Parker, K. K.; Shin, K. Photosynthetic Artificial Organelles Sustain and Control ATPDependent Reactions in a Protocellular System. Nat. Biotechnol. 2018, 36, 530−535.
[28] Liu, W. L.; Zou, M. Z.; Qin, S. Y.; Cheng, Y. J.; Ma, Y. H.; Sun, Y. X.; Zhang, X. Z. Recent Advances of Cell Membrane-Coated Nanomaterials for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 2003559.
[29] György, B.; Hung, M. E.; Breakefield, X. O.; Leonard, J. N. Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 439− 464.
[30] Altendorf, K.; Müller, C. R.; Sandermann, H., Jr. β-dGalactoside Transport in Escherichia coli. Eur. J. Biochem. 1977, 73, 545−551.
[31] Liu, Q.; Bi, C.; Li, J.; Liu, X.; Peng, R.; Jin, C.; Sun, Y.; Lyu, Y.; Liu, H.; Wang, H.; Luo, C.; Tan, W. Generating Giant Membrane Vesicles from Live Cells with Preserved Cellular Properties. Research [Washington, D.C.] 2019, 2019, 6523970.
[32] Zhang, X.; Shao, X.; Cai, Z.; Yan, X.; Zong, W. The Fabrication of Phospholipid Vesicle-Based Artificial Cells and Their Functions. New J. Chem. 2021, 45, 3364−3376.
[33] Hargreaves, W. R.; Mulvihill, S. J.; Deamer, D. W. Synthesis of Phospholipids and Membranes in Prebiotic Conditions. Nature 1977, 266, 78−80.
[34] Schrum, J. P.; Zhu, T. F.; Szostak, J. W. The Origins of Cellular Life. Cold Spring Harb. Perspect. Biol. 2010, 2, a002212.
[35] Meierhenrich, U. J.; Filippi, J.-J.; Meinert, C.; Vierling, P.; Dworkin, J. P. On the Origin of Primitive Cells: From Nutrient Intake to Elongation of Encapsulated Nucleotides. Angew. Chem., Int. Ed. Engl. 2010, 49, 3738−3750.
[36] Gebicki, J. M.; Hicks, M. Ufasomes are Stable Particles surrounded by Unsaturated Fatty Acid Membranes. Nature 1973, 243, 232−234.
[37] Berclaz, N.; Müller, M.; Walde, P.; Luisi, P. L. Growth and Transformation of Vesicles Studied by Ferritin Labeling and Cryotransmission Electron Microscopy. J. Phys. Chem. B 2001, 105, 1056−1064.
[38] Claessens, M.; Van Oort, B.; Leermakers, F.; Hoekstra, F.; Cohen Stuart, M. A. Charged Lipid Vesicles: Effects of Salts on Bending Rigidity, Stability, and Size. Biophys. J. 2004, 87, 3882−3893. [39] Lu, Y.; Allegri, G.; Huskens, J. Vesicle-Based Artificial Cells: Materials, Construction Methods and Applications. Mater. Horiz. 2022, 9, 892−907.
[40] Green, J. J.; Elisseeff, J. H. Mimicking Biological Functionality with Polymers for Biomedical Applications. Nature 2016, 540, 386− 494.
[41] Discher, D. E.; Eisenberg, A. Polymer Vesicles. Science 2002, 297, 967−973.
[42] Antonietti, M.; Förster, S. Vesicles and Liposomes: A SelfAssembly Principle Beyond Lipids. Adv. Mater. 2003, 15, 1323−1333.
[43] Dimova, R.; Stano, P.; Marques, C. M.; Walde, P. In The Giant Vesicle Book; Dimova, R., Marques, C. M., Eds.; CRC Press: Boca Raton, Florida, USA, 2019.
[44] Chang, T. M. S. Semipermeable Microcapsules. Science 1964, 146, 524−525.
[45] Chang, T. M. S. Therapeutic Applications of Polymeric Artificial Cells. Nat. Rev. Drug Discovery 2005, 4, 221−235.
[46] Chang, T. M. S. Artificial Cell Biotechnology for Medical Applications. Blood Purif. 2000, 18, 91−96.
[47] Liu, Z. C.; Chang, T. M. S. Artificial Cell Microencapsulated Stem Cells in Regenerative Medicine, Tissue Engineering and Cell Therapy. Adv. Exp. Med. Biol. 2010, 670, 68−79.
[48] Chang, T. M. S. Artificial Cells and Bioencapsulation in Bioartificial Organs. Ann. N.Y. Acad. Sci. 1997, 831, 249−259.
[49] Chang, T. M. S. Artificial Cells for Cell and Organ Replacements. Artif. Organs 2004, 28, 265−270.
[50] Orive, G.; Hernández, R. M.; Gascón, A. R.; Calafiore, R.; Chang, T. M. S.; De Vos, P.; Hortelano, G.; Hunkeler, D.; Lacík, I.; Shapiro, A. M. J.; Pedraz, J. L. Cell Encapsulation: Promise and Progress. Nat. Med. 2003, 9, 104−107.
[51] Chang, T. M. S. Removal of Endogenous and Exogenous Toxins by a Microencapsulated Absorbent. Can. J. Physiol. Pharmacol. 1969, 47, 1043−1045.
[52] Chang, T. M. S.; Poznansky, M. J. Semipermeable Microcapsules containing Catalase for Enzyme Replacement in Acatalasaemic Mice. Nature 1968, 218, 243−245.
[53] Chang, T. M. S. The in vivo Effects of Semipermeable Microcapsules containing L-Asparaginase on 6C3HED Lymphosarcoma. Nature 1971, 229, 117−118.
[54] Chang, T. M. S. Stabilisation of Enzymes by Microencapsulation with a Concentrated Protein Solution or by Microencapsulation Followed by Cross-Linking with Glutaraldehyde. Biochem. Biophys. Res. Commun. 1971, 44, 1531−1536.
[55] Bi, H.; Yang, B.; Wang, L.; Cao, W.; Han, X. Electroformation of Giant Unilamellar Vesicles Using Interdigitated ITO Electrodes. J. Mater. Chem. A 2013, 1, 7125−7130.
[56] Lim, F.; Sun, A. M. Microencapsulated Islets as Bioartificial Endocrine Pancreas. Science 1980, 210, 908−910.
[57] O’Shea, G. M.; Sun, A. M. Encapsulation of Rat Islets of Langerhans Prolongs Xenograft Survival in Diabetic Mice. Diabetes 1986, 35, 943−946.
[58] Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles. Acc. Chem. Res. 2011, 44, 1039−1049.
[59] Martino, C.; Kim, S. H.; Horsfall, L.; Abbaspourrad, A.; Rosser, S. J.; Cooper, J.; Weitz, D. A. Protein Expression, Aggregation, and Triggered Release from Polymersomes as Artificial Cell-like Structures. Angew. Chem., Int. Ed. 2012, 51, 6416−6420.
[60] Tamate, R.; Ueki, T.; Yoshida, R. Self-Beating Artificial Cells: Design of Cross-Linked Polymersomes Showing Self-Oscillating Motion. Adv. Mater. 2015, 27, 837−842.
[61] Palivan, C. G.; Goers, R.; Najer, A.; Zhang, X.; Car, A.; Meier, W. Bioinspired Polymer Vesicles and Membranes for Biological and Medical Applications. Chem. Soc. Rev. 2016, 45, 377−411.
[62] Le Meins, J. F.; Schatz, C.; Lecommandoux, S.; Sandre, O. Hybrid Polymer/Lipid Vesicles: State of the Art and Future Perspectives. Mater. Today 2013, 16, 397−402.
[63] Chemin, M.; Brun, P.-M.; Lecommandoux, S.; Sandre, O.; Le Meins, J.-F. Hybrid Polymer/Lipid Vesicles: Fine Control of the Lipid and Polymer Distribution in the Binary Membrane. Soft Matter 2012, 8, 2867−2874.
[64] Khan, S.; McCabe, J.; Hill, K.; Beales, P. A. Biodegradable Hybrid Block Copolymer - Lipid Vesicles as Potential Drug Delivery Systems. J. Colloid Interface Sci. 2020, 562, 418−428.
[65] Huang, X.; Li, M.; Green, D. C.; Williams, D. S.; Patil, A. J.; Mann, S. Interfacial Assembly of Protein-Polymer Nano-Conjugates into Stimulus-Responsive Biomimetic Protocells. Nat. Commun. 2013, 4, 2239.
[66] Chang, T. M. S. Semipermeable Aqueous Microcapsules. Ph.D. Thesis, McGill University, Montreal, Canada, 1965.
[67] Chang, T. M. S. Semipermeable Aqueous Microcapsules [“Artificial Cells”]: With Emphasis on Experiments in An Extracorporeal Shunt System. Trans. Am. Soc. Artif. Int. Organs 1966, 12, 13−19.
[68] Chang, T. M. S. Biodegradable Semipermeable Microcapsules Containing Enzymes, Hormones, Vaccines, and Other Biologicals. J. Bioengineering 1976, 1, 25−32.
[69] Chang, T. M. S.; Malave, N. The Development and First Clinical Use of Semipermeable Microcapsules [Artificial Cells] as a Compact Artificial Kidney. Trans. Am. Soc. Artif. Int. Organs 1970, 16, 141−148.
[70] Chang, T. M. S. Artificial Cells; Thomas: Springfield, Illinois, USA, 1972.
[71] Rosenthal, A. M.; Chang, T. M. S. The Incorporation of Lipid and Na+-K+-Atpase into the Membranes of Semipermeable Microcapsules. J. Membr. Sci. 1980, 6, 329−338.
[72] Yu, W. P.; Chang, T. M. S. Submicron Biodegradable Polymer Membrane Hemoglobin Nanocapsules As Potential Blood Substitutes: A Preliminary Report. Artif. Cells Blood Substit. Immobil. Biotechnol. 1994, 22, 889−893.
[73] Chang, T. M. S.; Yu, W. P. In Blood Substitutes: Principles, Methods, Products and Clinical Trials, Vol. 2; Chang, T. M. S., Ed.; Karger: Basel, Switzerland, 1998; pp 216−220.
[74] Chang, T. M. S.; Powanda, D.; Yu, W. P. Analysis Polyethylene-Glycol-Polylactide Nano-Dimension Artificial Red Blood Cells in Maintaining Systemic Hemoglobin Levels and Prevention of Methemoglobin Formation. Artif. Cells Blood Substit. Immobil. Biotechnol. 2003, 31, 231−247.
[75] Gibson, D. G.; Glass, J. I.; Lartigue, C.; Noskov, V. N.; Chuang, R.-Y.; Algire, M. A.; Benders, G. A.; Montague, M. G.; Ma, L.; Moodie, M. M.; Merryman, C.; Vashee, S.; Krishnakumar, R.; AssadGarcia, N.; Andrews-Pfannkoch, C.; Denisova, E. A.; Young, L.; Qi, Z.-Q.; Segall-Shapiro, T. H.; Calvey, C. H.; et al. Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 2010, 329, 52−56.
[76] Li, M.; Green, D. C.; Anderson, J. L. R.; Binks, B. P.; Mann, S. In vitro Gene Expression and Enzyme Catalysis in Bio-Inorganic Protocells. Chem. Sci. 2011, 2, 1739−1745.
[77] Koga, S.; Williams, D. S.; Perriman, A. W.; Mann, S. PeptideNucleotide Microdroplets As a Step towards a Membrane-Free Protocell Model. Nat. Chem. 2011, 3, 720−724.
[78] Chen, Z.; Wang, J.; Sun, W.; Archibong, E.; Kahkoska, A. R.; Zhang, X.; Lu, Y.; Ligler, F. S.; Buse, J. B.; Gu, Z. Synthetic Beta Cells for Fusion-Mediated Dynamic Insulin Secretion. Nat. Chem. Biol. 2018, 14, 86−93.
[79] Liu, J.; Guo, Z.; Liang, K. Biocatalytic Metal-Organic Framework-Based Artificial Cells. Adv. Funct. Mater. 2019, 29, 1905321.
[80] Yang, Q.; Guo, Z.; Liu, H.; Peng, R.; Xu, L.; Bi, C.; He, Y.; Liu, Q.; Tan, W. A Cascade Signaling Network between Artificial Cells Switching Activity of Synthetic Transmembrane Channels. J. Am. Chem. Soc. 2021, 143, 232−240.
[81] Liu, S.; Zhang, Y.; Li, M.; Xiong, L.; Zhang, Z.; Yang, X.; He, X.; Wang, K.; Liu, J.; Mann, S. Enzyme-Mediated Nitric Oxide Production in Vasoactive Erythrocyte Membrane-Enclosed Coacervate Protocells. Nat. Chem. 2020, 12, 1165−1173.
[82] Pelletier, J. F.; Sun, L.; Wise, K. S.; Assad-Garcia, N.; Karas, B. J.; Deerinck, T. J.; Ellisman, M. H.; Mershin, A.; Gershenfeld, N.; Chuang, R.-Y.; Glass, J. I.; Strychalski, E. A. Genetic Requirements for Cell Division in a Genomically Minimal Cell. Cell 2021, 184, 2430− 2440.
[83] Xu, Z.; Hueckel, T.; Irvine, W. T. M.; Sacanna, S. Transmembrane Transport in Inorganic Colloidal Cell-Mimics. Nature 2021, 597, 220−224.
[84] Liu, J.; Xue, J.; Fu, L.; Xu, J.; Lord, M. S.; Liang, K. Genetically Encoded Synthetic Beta Cells for Insulin Biosynthesis and Release under Hyperglycemic Conditions. Adv. Funct. Mater. 2022, 32, 2111271.
[85] Lim, B.; Yin, Y.; Ye, H.; Cui, Z.; Papachristodoulou, A.; Huang, W. E. Reprogramming Synthetic Cells for Targeted Cancer Therapy. ACS Synth. Biol. 2022, 11, 1349−1360.
[86] Li, M.; Huang, X.; Tang, T.-Y. D.; Mann, S. Synthetic Cellularity Based on Non-Lipid Micro-Compartments and Protocell Models. Curr. Opin. Chem. Biol. 2014, 22, 1−11.
[87] Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles. Science 2002, 298, 1006− 1009.
[88] Binks, B. P.; Murakami, R. Phase Inversion of ParticleStabilized Materials from Foams to Dry Water. Nat. Mater. 2006, 5, 865−869.
[89] Subramaniam, A. B.; Wan, J.; Gopinath, A.; Stone, H. A. SemiPermeable Vesicles Composed of Natural Clay. Soft Matter 2011, 7, 2600−2612.
[90] Wang, C. Y.; Liu, H.; Gao, Q.; Liu, X.; Tong, Z. Facile Fabrication of Hybrid Colloidosomes with Alginate Gel Cores and Shells of Porous CaCO3 Microparticles. ChemPhysChem 2007, 8, 1157−1160.
[91] He, Y. Q.; Wu, F.; Sun, X.; Li, R.; Guo, Y.; Li, C.; Zhang, L.; Xing, F.; Wang, W.; Gao, J. Factors That Affect Pickering Emulsions Stabilized by Graphene Oxide. ACS Appl. Mater. Interfaces 2013, 5, 4843−4855.
[92] Bachinger, A.; Kickelbick, G. Pickering Emulsions Stabilized by Anatase Nanoparticles. Monatsh. Chem. 2010, 141, 685−690.
[93] Zhou, J.; Wang, L.; Qiao, X.; Binks, B. P.; Sun, K. Pickering Emulsions Stabilized by Surface-Modified Fe3O4 Nanoparticles. J. Colloid Interface Sci. 2012, 367, 213−224.
[94] He, J.; Liu, Y.; Babu, T.; Wei, Z.; Nie, Z. Self-Assembly of Inorganic Nanoparticle Vesicles and Tubules Driven by Tethered Linear Block Copolymers. J. Am. Chem. Soc. 2012, 134, 11342− 11345.
[95] Huo, C.; Li, M.; Huang, X.; Yang, H.; Mann, S. Membrane Engineering of Colloidosome Microcompartments Using Partially Hydrophobic Mesoporous Silica Nanoparticles. Langmuir 2014, 30, 15047−15052.
[96] Tamate, R.; Ueki, T.; Yoshida, R. Evolved Colloidosomes Undergoing Cell-like Autonomous Shape Oscillations with Buckling. Angew. Chem., Int. Ed. 2016, 55, 5179−5183.
[97] Li, M.; Huang, X.; Mann, S. Spontaneous Growth and Division in Self-Reproducing Inorganic Colloidosomes. Small 2014, 10, 3291− 3298.
[98] Rodríguez-Arco, L.; Li, M.; Mann, S. Phagocytosis-Inspired Behaviour in Synthetic Protocell Communities of Compartmentalized Colloidal Objects. Nat. Mater. 2017, 16, 857−863.
[99] Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329, 424−428.
[100] Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444.
[101] Zuo, Q.; Liu, T.; Chen, C.; Ji, Y.; Gong, X.; Mai, Y.; Zhou, Y. Ultrathin Metal-Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visible-Light-Driven Photocatalytic H2 Evolution. Angew. Chem. 2019, 58, 10198−10203.
[102] Zhang, C.; Zhang, L.; Wu, W.; Gao, F.; Li, R.-Q.; Song, W.; Zhuang, Z.-N.; Liu, C.-J.; Zhang, X.-Z. Artificial Super Neutrophils for Inflammation Targeting and HClO Generation against Tumors and Infections. Adv. Mater. 2019, 31, No. e1901179. [103] Brangwynne, C. P. Phase Transitions and Size Scaling of Membrane-Less Organelles. J. Cell Biol. 2013, 203, 875−881.
[104] Banani, S. F.; Lee, H. O.; Hyman, A. A.; Rosen, M. K. Biomolecular Condensates: Organizers of Cellular Biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285−298.
[105] Veis, A. A Review of The Early Development of The Thermodynamics of The Complex Coacervation Phase Separation. Adv. Colloid Interface Sci. 2011, 167, 2−11.
[106] Aumiller, W. M.; Pir Cakmak, F.; Davis, B. W.; Keating, C. D. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly. Langmuir 2016, 32, 10042−10053.
[107] Kim, S.; Huang, J.; Lee, Y.; Dutta, S.; Yoo, H. Y.; Jung, Y. M.; Jho, Y.; Zeng, H.; Hwang, D. S. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E847−E853.
[108] Yin, Y.; Niu, L.; Zhu, X.; Zhao, M.; Zhang, Z.; Mann, S.; Liang, D. Non-Equilibrium Behaviour in Coacervate-Based Protocells Under Electric-Field-Induced Excitation. Nat. Commun. 2016, 7, 10658.
[109] Browning, S. T.; Shuler, M. L. Towards the Development of a Minimal Cell Model by Generalization of a Model of Escherichia coli: Use of Dimensionless Rate Parameters. Biotechnol. Bioeng. 2001, 76, 187−192.
[110] Fraser, C. M.; Gocayne, J. D.; White, O.; Adams, M. D.; Clayton, R. A.; Fleischmann, R. D.; Bult, C. J.; Kerlavage, A. R.; Sutton, G.; Kelley, J. M.; Fritchman, R. D.; Weidman, J. F.; Small, K. V.; Sandusky, M.; Fuhrmann, J.; Nguyen, D.; Utterback, T. R.; Saudek, D. M.; Phillips, C. A.; Merrick, J. M.; et al. The Minimal Gene Complement of Mycoplasma Genitalium. Science 1995, 270, 397− 403.
[111] Hutchison, C. A.; Peterson, S. N.; Gill, S. R.; Cline, R. T.; White, O.; Fraser, C. M.; Smith, H. O.; Venter, J. C. Global Transposon Mutagenesis and a Minimal Mycoplasma Genome. Science 1999, 286, 2165−2169.
[112] Koonin, E. V.; Mushegian, A. R. Complete Genome Sequences of Cellular Life Forms: Glimpses of Theoretical Evolutionary Genomics. Curr. Opin. Genet. Dev. 1996, 6, 757−762.
[113] Kolisnychenko, V.; Plunkett, G., 3rd; Herring, C. D.; Fehér, T.; Pósfai, J.; Blattner, F. R.; Pósfai, G. Engineering a Reduced Escherichia coli Genome. Genome Res. 2002, 12, 640−647.
[114] Gil, R.; Sabater-Muñoz, B.; Latorre, A.; Silva, F. J.; Moya, A. Extreme Genome Reduction in Buchnera Spp.: Toward the Minimal Genome Needed for Symbiotic Life. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4454−4458.
[115] Gil, R.; Silva, F. J.; Peretó, J.; Moya, A. Determination of the Core of a Minimal Bacterial Gene Set. Microbiol. Mol. Biol. Rev. 2004, 68, 518−537.
[116] Luisi, P. L. Chemical Aspects of Synthetic Biology. Chem. Biodivers. 2007, 4, 603−621.
[117] Forster, A. C.; Church, G. M. Synthetic Biology Projects in vitro. Genome Res. 2007, 17, 1−6.
[118] Luisi, P. L.; Ferri, F.; Stano, P. Approaches to Semi-Synthetic Minimal Cells: A Review. Naturwissenschaften 2006, 93, 1−13.
[119] Luisi, P. L.; Oberholzer, T.; Lazcano, A. The Notion of a DNA Minimal Cell: A General Discourse and Some Guidelines for an Experimental Approach. Helv. Chim. Acta 2002, 85, 1759−1777.
[120] Cello, J.; Paul, A. V.; Wimmer, E. Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template. Science 2002, 297, 1016−1018.
[121] Trantidou, T.; Friddin, M.; Elani, Y.; Brooks, N. J.; Law, R. V.; Seddon, J. M.; Ces, O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS Nano 2017, 11, 6549−6565.
[122] Kamiya, K.; Takeuchi, S. Giant Liposome Formation toward the Synthesis of Well-Defined Artificial Cells. J. Mater. Chem. B 2017, 5, 5911−5923.
[123] Davies, R. T.; Kim, D.; Park, J. Amperometric Immunosensor for Rapid Detection of Mycobacterium tuberculosis. J. Micromech. Microeng. 2012, 22, 055013.
[124] Mayer, L.; Hope, M.; Cullis, P. Vesicles of Variable Sizes Produced by a Rapid Extrusion Procedure. Biochim. Biophys. Acta Biomembr. 1986, 858, 161−168.
[125] Nuti, N.; Verboket, P.; Dittrich, P. S. Multivesicular Droplets: A Cell Model System to Study Compartmentalised Biochemical Reactions. Lab Chip 2017, 17, 3112−3119.
[126] Bangham, A. D.; Horne, R. Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents As Observed in the Electron Microscope. J. Mol. Biol. 1964, 8, 660−668.
[127] Stein, H.; Spindler, S.; Bonakdar, N.; Wang, C.; Sandoghdar, V. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations. Front. Physiol. 2017, 8, 63.
[128] Peng, Z.; Kanno, S.; Shimba, K.; Miyamoto, Y.; Yagi, T. Preparation of Size-controlled Giant Vesicles Under Physiological Conditions. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 2020, 2198−2201. [129] Angelova, M. I.; Dimitrov, D. S. Liposome Electroformation. Faraday Discuss. 1986, 81, 303−311.
[130] Dimitrov, D.; Angelova, M. Lipid Swelling and Liposome Formation Mediated by Electric Fields. J. Electroanal. Chem. Interface Electrochem. 1988, 253, 323−336.
[131] Feng, B.; Zhou, F.; Lu, W.; Wang, D.; Wang, T.; Luo, C.; Wang, H.; Li, Y.; Yu, H. Phospholipid-Mimic Oxaliplatin Prodrug Liposome for Treatment of the Metastatic Triple Negative Breast Cancer. Biomater. Sci. 2017, 5, 1522−1525.
[132] Li, Q.; Wang, X.; Ma, S.; Zhang, Y.; Han, X. Electroformation of Giant Unilamellar Vesicles in Saline Solution. Colloids Surf., B 2016, 147, 368−375.
[133] Montes, L. R.; Alonso, A.; Goni, F. M.; Bagatolli, L. A. Giant Unilamellar Vesicles Electroformed from Native Membranes and Organic Lipid Mixtures under Physiological Conditions. Biophys. J. 2007, 93, 3548−3554.
[134] Lu, Y.; De Vries, W. C.; Overeem, N. J.; Duan, X.; Zhang, H.; Zhang, H.; Pang, W.; Ravoo, B. J.; Huskens, J. Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics. Angew. Chem., Int. Ed. 2019, 58, 159−163. [135] Xu, R.; Simpson, R. J.; Greening, D. W. Exosomes and Microvesicles; Springer: Switzerland, 2017.
[136] Elani, Y.; Gee, A.; Law, R. V.; Ces, O. Engineering MultiCompartment Vesicle Networks. Chem. Sci. 2013, 4, 3332−3338.
[137] Martino, C.; deMello, A. J. Droplet-Based Microfluidics for Artificial Cell Generation: A Brief Review. Interface Focus 2016, 6, 20160011.
[138] Ai, Y.; Xie, R.; Xiong, J.; Liang, Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. Small 2020, 16, 1903940.
[139] Deng, N. N.; Yelleswarapu, M.; Huck, W. T. Monodisperse Uni- and Multicompartment Liposomes. J. Am. Chem. Soc. 2016, 138, 7584−7591.
[140] Gañán-Calvo, A.; González-Prieto, R.; Riesco-Chueca, P.; Herrada, M. A.; Flores-Mosquera, M. Focusing Capillary Jets Close to the Continuum Limit. Nat. Phys. 2007, 3, 737−742.
[141] Park, M. K.; Jun, S.; Kim, I.; Jin, S. M.; Kim, J. G.; Shin, T. J.; Lee, E. Stepwise Drug-Release Behavior of Onion-Like Vesicles Generated from Emulsification-Induced Assembly of Semicrystalline Polymer Amphiphiles. Adv. Funct. Mater. 2015, 25, 4570−4579.
[142] MacDonald, R. C.; MacDonald, R. I.; Menco, B. P. M.; Takeshita, K.; Subbarao, N. K.; Hu, L.-R. Small-Volume Extrusion Apparatus for Preparation of Large, Unilamellar Vesicles. Biochim. Biophys. Acta Biomembr. 1991, 1061, 297−303.
[143] Olson, F.; Hunt, C. A.; Szoka, F. C.; Vail, W. J.; Papahadjopoulos, D. Preparation of Liposomes of Defined Size Distribution by Extrusion Through Polycarbonate Membranes. Biochim. Biophys. Acta Biomembr. 1979, 557, 9−23.
[144] Umbanhowar, P. B.; Prasad, V.; Weitz, D. A. Monodisperse Emulsion Generation via Drop Break off in a Coflowing Stream. Langmuir 2000, 16, 347−351.
[145] Ganan-Calvo, A. M.; Gordillo, J. M. Perfectly Monodisperse Microbubbling by Capillary Flow Focusing. Phys. Rev. Lett. 2001, 87, 274501.
[146] Guo, Z.; Wang, T.; Rawal, A.; Hou, J.; Cao, Z.; Zhang, H.; Xu, J.; Gu, Z.; Chen, V.; Liang, K. Biocatalytic self-propelled submarinelike metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Mater. Today 2019, 28, 10−16.
[147] Vanswaay, D.; Tang, T. Y. D.; Mann, S.; DeMello, A. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. Angew. Chem., Int. Ed. 2015, 54, 8398−8401.
[148] Zhang, Y.; Chen, Y.; Yang, X.; He, X.; Li, M.; Liu, S.; Wang, K.; Liu, J.; Mann, S. Giant Coacervate Vesicles As an Integrated Approach to Cytomimetic Modeling. J. Am. Chem. Soc. 2021, 143, 2866−2874.
[149] Aumiller, W. M.; Keating, C. D. Phosphorylation-Mediated RNA/Peptide Complex Coacervation As a Model for Intracellular Liquid Organelles. Nat. Chem. 2016, 8, 129−137.
[150] Deng, N.-N.; Huck, W. T. S. Microfluidic Formation of Monodisperse Coacervate Organelles in Liposomes. Angew. Chem., Int. Ed. 2017, 56, 9736−9740.
[151] Pitard, B.; Richard, P.; Dunarach, M.; Girault, G.; Rigaiud, J.L. ATP Synthesis by the F0F1 ATP Synthase from Thermophilic Bacillus PS3 Reconstituted into Liposomes with Bacteriorhodopsin. Eur. J. Biochem. 1996, 235, 769.
[152] Choi, H. J.; Montemagno, C. D. Artificial Organelle: ATP Synthesis from Cellular Mimetic Polymersomes. Nano Lett. 2005, 5, 2538−2542.
[153] Otrin, L.; Marusič ,̌ N.; Bednarz, C.; Vidakovic-́ Koch, T.; Lieberwirth, I.; Landfester, K.; Sundmacher, K. Toward Artificial Mitochondrion: Mimicking Oxidative Phosphorylation in Polymer and Hybrid Membranes. Nano Lett. 2017, 17, 6816−6821.
[154] Wendell, D.; Todd, J.; Montemagno, C. Artificial Photosynthesis in Ranaspumin-2 Based Foam. Nano Lett. 2010, 10, 3231− 3236.
[155] Fukuzumi, S.; Lee, Y. M.; Nam, W. Artificial Photosynthesis for Production of ATP, NAD[P]H, and Hydrogen Peroxide. ChemPhotoChem. 2018, 2, 121−135.
[156] Murtas, G. Internal Lipid Synthesis and Vesicle Growth as a Step Toward Self-Reproduction of the Minimal Cell. Syst. Synth. Biol. 2010, 4, 85−93.
[157] Walde, P.; Wick, R.; Fresta, M.; Mangone, A.; Luisi, P. L. J. Autopoietic Self-Reproduction of Fatty Acid Vesicles. Am. Chem. Soc. 1994, 116, 11649−11654.
[158] Wick, R.; Walde, P.; Luisi, P. L. J. Light Microscopic Investigations of the Autocatalytic Self-Reproduction of Giant Vesicles. Am. Chem. Soc. 1995, 117, 1435−1436.
[159] Dervaux, J.; Noireaux, V.; Libchaber, A. J. Growth and Instability of a Phospholipid Vesicle in a Bath of Fatty Acids. Eur. Phys. J. Plus 2017, 132, 284.
[160] Wick, R.; Luisi, P. L. Enzyme-Containing Liposomes Can Endogenously Produce Membrane-Constituting Lipids. Chem. Biol. 1996, 3, 277−285.
[161] Schmidli, P. K.; Schurtenberger, P.; Luisi, P. L. LiposomeMediated Enzymatic Synthesis of Phosphatidylcholine As an Approach to Self-Replicating Liposomes. J. Am. Chem. Soc. 1991, 113, 8127−8130.
[162] Post, E. A. J.; Fletcher, S. P. Dissipative Self-Assembly, Competition and Inhibition in a Self-Reproducing Protocell Model. Chem. Sci. 2020, 11, 9434−9442.
[163] Liu, L. P.; Zou, Y. K.; Bhattacharya, A.; Zhang, D. Y.; Lang, S. S. Q.; Houk, K. N.; Devaraj, N. K. Enzyme-Free Synthesis of Natural Phospholipids in Water. Nat. Chem. 2020, 12, 1029−1034. [164] Vance, J. A.; Devaraj, N. K. Membrane Mimetic Chemistry in Artificial Cells. J. Am. Chem. Soc. 2021, 143, 8223−8231.
[165] Zhu, T. F.; Szostak, J. W. Coupled Growth and Division of Model Protocell Membranes. J. Am. Chem. Soc. 2009, 131, 5705− 5713.
[166] Kurihara, K.; Tamura, M.; Shohda, K.; Toyota, T.; Suzuki, K.; Sugawara, T. Self-Reproduction of Supramolecular Giant Vesicles Combined with the Amplification of Encapsulated DNA. Nat. Chem. 2011, 3, 775−781.
[167] Hardy, M. D.; Yang, J.; Selimkhanov, J.; Cole, C. M.; Tsimring, L. S.; Devaraj, N. K. Self-Reproducing Catalyst Drives Repeated Phospholipid Synthesis and Membrane Growth. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 8187−8192.
[168] Andes-Koback, M.; Keating, C. D. Complete Budding and Asymmetric Division of Primitive Model Cells to Produce Daughter Vesicles with Different Interior and Membrane Compositions. J. Am. Chem. Soc. 2011, 133, 9545−9555.
[169] Deshpande, S.; Spoelstra, W. K.; Van Doorn, M.; Kerssemakers, J.; Dekker, C. Mechanical Division of Cell-Sized Liposomes. ACS Nano 2018, 12, 2560−2568.
[170] Dreher, Y.; Jahnke, K.; Bobkova, E.; Spatz, J. P.; Göpfrich, K. Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles. Angew. Chem., Int. Ed. 2021, 60, 10661−10669.
[171] Terasawa, H.; Nishimura, K.; Suzuki, H.; Matsuura, T.; Yomo, T. Coupling of the Fusion and Budding of Giant Phospholipid Vesicles Containing Macromolecules. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 5942−5947.
[172] Snead, W. T.; Hayden, C. C.; Gadok, A. K.; Zhao, C.; Lafer, E. M.; Rangamani, P.; Stachowiak, J. C. Membrane Fission by Protein Crowding. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E3258−E3267.
[173] Steinkuhler, J.; Knorr, R. L.; Zhao, Z. L.; Bhatia, T.; Bartelt, S. M.; Wegner, S.; Dimova, R.; Lipowsky, R. Controlled Division of Cell-Sized Vesicles by Low Densities of Membrane-Bound Proteins. Nat. Commun. 2020, 11, 11.
[174] Bashirzadeh, Y.; Liu, A. P. Encapsulation of the Cytoskeleton: Towards Mimicking the Mechanics of a Cell. Soft Matter 2019, 15, 8425−8436.
[175] Fletcher, D. A.; Mullins, R. D. Cell Mechanics and the Cytoskeleton. Nature 2010, 463, 485−492.
[176] Anitei, M.; Hoflack, B. Bridging Membrane and Cytoskeleton Dynamics in the Secretory and Endocytic Pathways. Nat. Cell Biol. 2012, 14, 11−19.
[177] Mulla, Y.; Aufderhorst-Roberts, A.; Koenderink, G. H. Shaping Up Synthetic Cells. Phys. Biol. 2018, 15, 041001.
[178] Fanalista, F.; Birnie, A.; Maan, R.; Burla, F.; Charles, K.; Pawlik, G.; Deshpande, S.; Koenderink, G. H.; Dogterom, M.; Dekker, C. Shape and Size Control of Artificial Cells for Bottom-Up Biology. ACS Nano 2019, 13, 5439−5450.
[179] Martos, A.; Jiménez, M.; Rivas, G.; Schwille, P. Towards a Bottom-Up Reconstitution of Bacterial Cell Division. Trends Cell Biol. 2012, 22, 634−643.
[180] Osawa, M.; Erickson, H. P. Liposome Division by a Simple Bacterial Division Machinery. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11000−11004.
[181] Anitei, M.; Stange, C.; Czupalla, C.; Niehage, C.; Schuhmann, K.; Sala, P.; Czogalla, A.; Pursche, T.; Coskun, U.; Shevchenko, A.; Hoflack, B. Spatiotemporal Control of Lipid Conversion, Actin-Based Mechanical Forces, and Curvature Sensors during Clathrin/AP-1Coated Vesicle Biogenesis. Cell Rep. 2017, 20, 2087−2099.
[182] Nadeem, A.; Sanborn, J.; Gettel, D. L.; James, H. C. S.; Rydström, A.; Ngassam, V. N.; Klausen, T. K.; Pedersen, S. F.; Lam, M.; Parikh, A. N.; Svanborg, C. Protein Receptor-Independent Plasma Membrane Remodeling by HAMLET: A Tumoricidal Protein-Lipid Complex. Sci. Rep. 2015, 5, 16432.
[183] Jin, L.; Kamat, N. P.; Jena, S.; Szostak, J. W. Fatty Acid/ Phospholipid Blended Membranes: A Potential Intermediate State in Protocellular Evolution. Small 2018, 14, 1704077.
[184] Zhou, X. F.; Dalai, P.; Sahai, N. Semipermeable Mixed Phospholipid-Fatty Acid Membranes Exhibit K+/Na+ Selectivity in the Absence of Proteins. Life 2020, 10, 39.
[185] Cole, C. M.; Brea, R. J.; Kim, Y. H.; Hardy, M. D.; Yang, J.; Devaraj, N. K. Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis. Angew. Chem., Int. Ed. 2015, 54, 12738−12742. [186] Matile, S.; Vargas Jentzsch, A.; Montenegro, J.; Fin, A. Recent Synthetic Transport Systems. Chem. Soc. Rev. 2011, 40, 2453−2474.
[187] Muraoka, T.; Noguchi, D.; Kasai, R. S.; Sato, K.; Sasaki, R.; Tabata, K. V.; Ekimoto, T.; Ikeguchi, M.; Kamagata, K.; Hoshino, N.;
Noji, H.; Akutagawa, T.; Ichimura, K.; Kinbara, K. A Synthetic Ion Channel with Anisotropic Ligand Response. Nat. Commun. 2020, 11, 2924.
[188] Langecker, M.; Arnaut, V.; Martin, T. G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F. C. Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures. Science 2012, 338, 932−936.
[189] Peters, R. J. R. W.; Nijemeisland, M.; van Hest, J. C. M. Reversibly Triggered Protein-Ligand Assemblies in Giant Vesicles. Angew. Chem., Int. Ed. 2015, 54, 9614−9617.
[190] Peng, R.; Xu, L.; Wang, H.; Lyu, Y.; Wang, D.; Bi, C.; Cui, C.; Fan, C.; Liu, Q.; Zhang, X.; Tan, W. DNA-Based Artificial Molecular Signaling System That Mimics Basic Elements of Reception and Response. Nat. Commun. 2020, 11, 978.
[191] Brea, R. J.; Rudd, A. K.; Devaraj, N. K. Nonenzymatic Biomimetic Remodeling of Phospholipids in Synthetic Liposomes. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 8589−8594.
[192] Li, M.; Harbron, R. L.; Weaver, J. V. M.; Binks, B. P.; Mann, S. Electrostatically Gated Membrane Permeability in Inorganic Protocells. Nat. Chem. 2013, 5, 529−536.
[193] Zhong, D. N.; Li, W. L.; Qi, Y. C.; He, J.; Zhou, M. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for FL/PA/MR Imaging-Guided Enhanced Radio-Photodynamic Synergetic Therapy. Adv. Funct. Mater. 2020, 30, 1910395.
[194] Chen, W.; Huang, T.; Shi, K.; Chu, B. Y.; Qian, Z. Y. Chemotaxis-based self-accumulation of surface-engineered mitochondria for cancer therapeutic improvement. Nano Today 2020, 35, 100966.
[195] Wu, Y.; Si, T.; Gao, C.; Yang, M.; He, Q. Bubble-Pair Propelled Colloidal Kayaker. J. Am. Chem. Soc. 2018, 140, 11902− 11905.
[196] Wilson, D. A.; Nolte, R. J. M.; van Hest, J. C. M. Autonomous Movement of Platinum-Loaded Stomatocytes. Nat. Chem. 2012, 4, 268−274.
[197] Abdelmohsen, L. K. E. A.; Nijemeisland, M.; Pawar, G. M.; Janssen, G.-J. A.; Nolte, R. J. M.; van Hest, J. C. M.; Wilson, D. A. Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor. ACS Nano 2016, 10, 2652−2660.
[198] Peng, F.; Tu, Y.; van Hest, J. C. M.; Wilson, D. A. Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior towards Cells. Angew. Chem., Int. Ed. 2015, 54, 11662− 11665.
[199] Hindley, J. W.; Elani, Y.; McGilvery, C. M.; Ali, S.; Bevan, C. L.; Law, R. V.; Ces, O. Light-Triggered Enzymatic Reactions in Nested Vesicle Reactors. Nat. Commun. 2018, 9, 1093.
[200] Einfalt, T.; Witzigmann, D.; Edlinger, C.; Sieber, S.; Goers, R.; Najer, A.; Spulber, M.; Onaca-Fischer, O.; Huwyler, J.; Palivan, C. G. Biomimetic Artificial Organelles with in vitro and in vivo Activity Triggered by Reduction in Microenvironment. Nat. Commun. 2018, 9, 1127.
[201] van Roekel, H. W.; Rosier, B. J.; Meijer, L. H.; Hilbers, P. A.; Markvoort, A. J.; Huck, W. T.; de Greef, T. F. Programmable Chemical Reaction Networks: Emulating Regulatory Functions in Living Cells Using a Bottom-Up Approach. Chem. Soc. Rev. 2015, 44, 7465−7483.
[202] Li, M.; Hanford, M. J.; Kim, J.-W.; Peeples, T. L. Amyloglucosidase Enzymatic Reactivity inside Lipid Vesicles. J. Biol. Eng. 2007, 1, 4.
[203] Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic Reactions in Confined Environments. Nat. Nanotechnol. 2016, 11, 409−420.
[204] Yoshimoto, M. Stabilization of Enzymes through Encapsulation in Liposomes. Methods Mol. Biol. 2011, 679, 9−18.
[205] Belluati, A.; Thamboo, S.; Najer, A.; Maffeis, V.; von Planta, C.; Craciun, I.; Palivan, C. G.; Meier, W. Multicompartment Polymer Vesicles with Artificial Organelles for Signal-Triggered Cascade Reactions Including Cytoskeleton Formation. Adv. Funct. Mater. 2020, 30, 2002949.
[206] Hashizaki, K.; Taguchi, H.; Itoh, C.; Sakai, H.; Abe, M.; Saito, Y.; Ogawa, N. Effects of Poly[ethylene glycol] [PEG] Chain Length of PEG-Lipid on the Permeability of Liposomal Bilayer Membranes. Chem. Pharm. Bull. 2003, 51, 815−820.
[207] Nourian, Z.; Roelofsen, W.; Danelon, C. Triggered Gene Expression in Fed-Vesicle Microreactors with a Multifunctional Membrane. Angew. Chem., Int. Ed. 2012, 51, 3114−3118.
[208] Fischer, A.; Franco, A.; Oberholzer, T. Giant Vesicles as Microreactors for Enzymatic mRNA Synthesis. ChemBioChem. 2002, 3, 409−417.
[209] Van Nies, P.; Westerlaken, I.; Blanken, D.; Salas, M.; Mencía, M.; Danelon, C. Self-Replication of DNA by Its Encoded Proteins in Liposome-Based Synthetic Cells. Nat. Commun. 2018, 9, 1.
[210] Li-Beisson, Y.; Neunzig, J.; Lee, Y.; Philippar, K. Plant Membrane-Protein Mediated Intracellular Traffic of Fatty Acids and Acyl Lipids. Curr. Opin. Plant Biol. 2017, 40, 138−146.
[211] Buzon, V.; Natrajan, G.; Schibli, D.; Campelo, F.; Kozlov, M. M.; Weissenhorn, W. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions, Crystal Structure of HIV-1 gp41 Including Both Fusion Peptide and Membrane Proximal External Regions. PloS Pathogens 2010, 6, No. e1000880.
[212] Harrison, S. C. Viral Membrane Fusion. Nat. Struct. Mol. Biol. 2008, 15, 690−698.
[213] Di Iorio, D.; Lu, Y.; Meulman, J.; Huskens, J. Recruitment of Receptors at Supported Lipid Bilayers Promoted by the Multivalent Binding of Ligand-Modified Unilamellar Vesicles. Chem. Sci. 2020, 11, 3307−3315.
[214] Lu, Y.; Huskens, J.; Pang, W.; Duan, X. Hypersonic Poration of Supported Lipid Bilayers. Mater. Chem. Front. 2019, 3, 782−790.
[215] Chan, Y. H. M.; van Lengerich, B.; Boxer, S. G. LipidAnchored DNA Mediates Vesicle Fusion As Observed by Lipid and Content Mixing. Biointerphases 2008, 3, FA17. [216] Pelham, H. R. SNAREs and the Specificity of Membrane Fusion. Trends Cell Biol. 2001, 11, 99−101.
[217] Marsden, H. R.; Elbers, N. A.; Bomans, P. H.; Sommerdijk, N. A.; Kros, A. A Reduced SNARE Model for Membrane Fusion. Angew. Chem., Int. Ed. 2009, 48, 2330−2333.
[218] Chan, Y. H. M.; van Lengerich, B.; Boxer, S. G. Effects of Linker Sequences on Vesicle Fusion Mediated by Lipid-Anchored DNA Oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 979− 984.
[219] Sun, S.; Li, M.; Dong, F.; Wang, S.; Tian, L.; Mann, S. Chemical Signaling and Functional Activation in Colloidosome-Based Protocells. Small 2016, 12, 1920−1927.
[220] Bolognesi, G.; Friddin, M. S.; Salehi-Reyhani, A.; Barlow, N. E.; Brooks, N. J.; Ces, O.; Elani, Y. Sculpting and Fusing Biomimetic Vesicle Networks Using Optical Tweezers. Nat. Commun. 2018, 9, 1.
[221] Bangham, A. D.; Standish, M. M.; Watkins, J. C. Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238−252.
[222] Gregoriadis, G. Drug carriers in biology and medicine; Academic Press: New York, USA, 1976.
[223] Torchilin, V. P. Recent Advances with Liposomes as Pharmaceutical Carriers. Nat. Rev. Drug Discovery 2005, 4, 145−160.
[224] Bowerman, C. J.; Byrne, J. D.; Chu, K. S.; Schorzman, A. N.; Keeler, A. W.; Sherwood, C. A.; Perry, J. L.; Luft, J. C.; Darr, D. B.; Deal, A. M.; Napier, M. E.; Zamboni, W. C.; Sharpless, N. E.; Perou, C. M.; DeSimone, J. M. Docetaxel-Loaded PLGA Nanoparticles Improve Efficacy in Taxane-Resistant Triple-Negative Breast Cancer. Nano Lett. 2017, 17, 242−248.
[225] Karkan, S.; Mohammadhosseini, M.; Panahi, Y.; Milani, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, E.; Hosseini, A.; Davaran, S. Magnetic Nanoparticles in Cancer Diagnosis and Treatment: A Review. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1−5. [226] Dürr, S.; Janko, C.; Lyer, S.; Tripal, P.; Schwarz, M.; Zaloga, J.; Tietze, R.; Alexiou, C. Magnetic Nanoparticles for Cancer Therapy. Nanotechnol. Rev. 2013, 2, 395−409.
[227] Lv, Q.; Cheng, L.; Lu, Y.; Zhang, X.; Wang, Y.; Deng, J.; Zhou, J.; Liu, B.; Liu, J. Thermosensitive Exosome-Liposome Hybrid Nanoparticle-Mediated Chemoimmunotherapy for Improved Treatment of Metastatic Peritoneal Cancer. Adv. Sci. 2020, 7, 2000515.
[228] Qiao, B.; Luo, Y.; Cheng, H.-B.; Ren, J.; Cao, J.; Yang, C.; Liang, B.; Yang, A.; Yuan, X.; Li, J.; Deng, L.; Li, P.; Ran, H.-T.; Hao, L.; Zhou, Z.; Li, M.; Zhang, Y.; Timashev, P. S.; Liang, X.-J.; Wang, Z. Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. ACS Nano 2020, 14, 12652.
[229] Chang, T. M. S. Red Blood Cell Replacement, Or Nanobiotherapeutics with Enhanced Red Blood Cell Functions. Artif. Cells Nanomed. Biotechnol. 2015, 43, 145−147. [230] Winslow, R. M. Blood substitutes; Academic Press: Amsterdam, Netherlands, 2006.
[231] Moore, E. E.; Moore, F. A.; Fabian, T. C.; Bernard, A. C.; Fulda, G. J.; Hoyt, D. B.; Duane, T. M.; Weireter, L. J., Jr.; Gomez, G. A.; Cipolle, M. D.; Rodman, G. H., Jr.; Malangoni, M. A.; Hides, G. A.; Omert, L. A.; Gould, S. A. PolyHeme Study Group, Human Polymerized Hemoglobin for the Treatment of Hemorrhagic Shock When Blood Is Unavailable: The USA Multicenter Trial. J. Am. Coll. Surg. 2009, 208, 1−13.
[232] Wang, L.; Liu, F.; Yan, K.; Pan, W.; Xu, L.; Liu, H.; Yan, C.; Chen, C.; Zhu, H. Effects of Resuscitation with Polymerized Porcine Hemoglobin [pPolyHb] on Hemodynamic Stability and Oxygen Delivery in a Rat Model of Hemorrhagic Shock. Artif. Cells Nanomed. Biotechnol. 2017, 45, 51−57.
[233] Li, Y.; Yan, D.; Hao, S.; Li, S.; Zhou, W.; Wang, H.; Liu, J.; Wang, X.; Yang, C. Polymerized Human Placenta Hemoglobin Improves Resuscitative Efficacy of Hydroxyethyl Starch in a Rat Model of Hemorrhagic Shock. Artif. Cells Nanomed. Biotechnol. 2015, 43, 174−179.
[234] Kim, H. W.; Greenburg, A. G. Haemoglobin-based oxygen carriers as red cell substitutes and oxygen therapeutics; Springer, New York, USA, 2014.
[235] Mer, M.; Hodgson, E.; Wallis, L.; Jacobson, B.; Levien, L.; Snyman, J.; Sussman, M. J.; James, M.; van Gelder, A.; Allgaier, R.; Jahr, J. S. Hemoglobin Glutamer-250 [Bovine] in South Africa: Consensus Usage Guidelines from Clinician Experts Who Have Treated Patients. Transfusion 2016, 56, 2631−2636.
[236] Bian, Y.; Chang, T. M. S. A Novel Nanobiotherapeutic Poly[Hemoglobin-Superoxide Dismutase-Catalase-Carbonic Anhydrase] With No Cardiac Toxicity for the Resuscitation of a Rat Model With 90 minutes of Sustained Severe Hemorrhagic Shock with Loss of 2/3 Blood Volume. Artif. Cells Nanomed. Biotechnol. 2015, 43, 1−9. [237] Guo, C.; Gynn, M.; Chang, T. M. S. Extraction of Superoxide Dismutase, Catalase, and Carbonic Anhydrase from Stroma-Free Red Blood Cell Hemolysate for the Preparation of the Nanobiotechnological Complex of Polyhemoglobin-Superoxide Dismutase-CatalaseCarbonic Anhydrase. Artif. Cells Nanomed. Biotechnol. 2015, 43, 157− 162.
[238] Guo, C.; Chang, T. M. S. Long Term Safety and Immunological Effects of a Nanobiotherapeutic, Bovine Poly[Hemoglobin-Catalase-Superoxide Dismutase-Carbonic Anhydrase], after Four Weekly 5% Blood Volume Top-Loading Followed by a Challenge of 30% Exchange Transfusion. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1349−1363.
[239] Bian, Y.; Guo, C.; Chang, T. M. S. Temperature Stability of Poly-[Hemoglobin-Superoxide Dismutase-Catalase-Carbonic Anhydrase] in the Form of a Solution or in the Lyophilized Form During Storage at −80 °C, 4 °C, 25 and 37 °C or Pasteurization at 70 °C. Artif. Cells Nanomed. Biotechnol. 2016, 44, 41−47.
[240] Hu, C.-M. J.; Fang, R. H.; Wang, K.-C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S. H.; Zhu, J.; Shi, W.; Hofman, F. M.; Chen, T. C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. at al., Nanoparticle Biointerfacing by Platelet Membrane Cloaking. Nature 2015, 526, 118−121.
[241] Lashof-Sullivan, M. M.; Shoffstall, E.; Atkins, K. T.; Keane, N.; Bir, C.; VandeVord, P.; Lavik, E. B. Intravenously Administered Nanoparticles Increase Survival Following Blast Trauma. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 10293−10298.
[242] Anselmo, A. C.; Modery-Pawlowski, C. L.; Menegatti, S.; Kumar, S.; Vogus, D. R.; Tian, L. L.; Chen, M.; Squires, T. M.; Sen Gupta, A.; Mitragotri, S. Platelet-Like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets to Target Vascular Injuries. ACS Nano 2014, 8, 11243−11253.
[243] Ma, Y.; Yang, H.; Zong, X.; Wu, J.; Ji, X.; Liu, W.; Yuan, P.; Chen, X.; Yang, C.; Li, X.; Chen, Y.; Xue, W.; Dai, J. Artificial M2Macrophages for Disease-Modifying Osteoarthritis Therapeutics. Biomaterials 2021, 274, 120865.
[244] Poznansky, M. J.; Chang, T. M. S. Comparison of the Enzyme Kinetics and Immunological Properties of Catalase Immobilized by Microencapsulation and Catalase in Free Solution for Enzyme Replacement. Biochim. Biophys. Acta 1974, 334, 103−115. [245] Wetzler, M.; Sanford, B. L.; Kurtzberg, J.; DeOliveira, D.; Frankel, S. R.; Powell, B. L.; Kolitz, J. E.; Bloomfield, C. D.; Larson, R. A. Effective Asparagine Depletion with Pegylated Asparaginase Results in Improved Outcomes in Adult Acute Lymphoblastic Leukemia: Cancer and Leukemia Group B Study 9511. Blood 2007, 109, 4164−4167.
[246] Kaminsky, Y. G.; Kosenko, E. A. Argocytes Containing Enzyme Nanoparticles Reduce Toxic Concentrations of Arginine in the Blood. Bull. Exp. Biol. Med. 2012, 153, 406−408.
[247] Wang, Y.; Chang, T. M. S. Biodegradable Nanocapsules Containing A Nanobiotechnological Complex for the In-vitro Suppression of A Melanoma Cell Line B16F10. J. Nanosci. Curr. Res. 2016, 1, 1000102.
[248] Machover, D.; Rossi, L.; Hamelin, J.; Desterke, C.; Goldschmidt, E.; Chadefaux-Vekemans, B.; Bonnarme, P.; Briozzo, P.; Kopecny̌ ,́ D.; Pierige,̀ F.; Magnani, M.; Mollicone, R.; HaghighiRad, F.; Gaston-Mathé, Y.; Dairou, J.; Boucheix, C.; Saffroy, R. Effects in Cancer Cells of the Recombinant l-Methionine Gamma-Lyase from Brevibacterium aurantiacum. Encapsulation in Human Erythrocytes for Sustained l-Methionine Elimination. J. Pharmacol. Exp. Ther. 2019, 369, 489−502.
[249] Kjellstrand, C.; Borges, H.; Pru, C.; Gardner, D.; Fink, D. On the Clinical Use of Microencapsulated Zirconium Phosphate-Urease for the Treatment of Chronic Uremia. Trans. Am. Soc. Artif. Int. Org. 1981, 27, 24−30.
[250] Palmour, R. M.; Goodyer, P.; Reade, T.; Chang, T. M. S. Microencapsulated Xanthine Oxidase As Experimental Therapy in Lesch-Nyhan Disease. Lancet 1989, 334, 687−688.
[251] Bourget, L.; Chang, T. M. S. Phenylalanine Ammonia-Lyase Immobilized in Microcapsules for the Depletion of Phenylalanine in Plasma in Phenylketonuric Rat Model. Biochim. Biophys. Acta 1986, 883, 432−438.
[252] Sarkissian, C. N.; Kang, T. S.; Gámez, A.; Scriver, C. R.; Stevens, R. C. Evaluation of Orally Administered PEGylated Phenylalanine Ammonia Lyase in Mice for the Treatment of Phenylketonuria. Mol. Genet. Metab. 2011, 104, 249−254.
[253] Abu Abed, O. S.; Chaw, C.; Williams, L.; Elkordy, A. A. Lysozyme and DNase I Loaded Poly [D, L Lactide-co-Caprolactone] Nanocapsules As an Oral Delivery System. Sci. Rep. 2018, 8, 13158.
[254] Rossi, L.; Pierige,̀ F.; Aliano, M. P.; Magnani, M. Ongoing Developments and Clinical Progress in Drug-Loaded Red Blood Cell Technologies. BioDrugs 2020, 34, 265−272.
[255] Rossi, L.; Pierige,̀ F.; Bregalda, A.; Magnani, M. Preclinical Developments of Enzyme-Loaded Red Blood Cells. Expert Opin. Drug Delivery 2021, 18, 43−54.
[256] de la Fuente, M.; Lombardero, L.; Gómez-González, A.; Solari, C.; Angulo-Barturen, I.; Acera, A.; Vecino, E.; Astigarraga, E.; Barreda-Gómez, G. Enzyme Therapy: Current Challenges and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 9181.
[257] Sato, Y. T.; Umezaki, K.; Sawada, S.; Mukai, S. A.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering Hybrid Exosomes by Membrane Fusion with Liposomes. Sci. Rep. 2016, 6, 21933.
[258] Gee, P.; Lung, M. S. Y.; Okuzaki, Y.; Sasakawa, N.; Iguchi, T.; Makita, Y.; Hozumi, H.; Miura, Y.; Yang, L. F.; Iwasaki, M.; Wang, X. H.; Waller, M. A.; Shirai, N.; Abe, Y. O.; Fujita, Y.; Watanabe, K.; Kagita, A.; Iwabuchi, K. A.; Yasuda, M.; Xu, H.; Noda, T.; Komano, J.; Sakurai, H.; Inukai, N.; Hotta, A.; et al. Extracellular Nanovesicles for Packaging of CRISPR-Cas9 Protein and sgRNA to Induce Therapeutic Exon Skipping. Nat. Commun. 2020, 11, 1334.
[259] Zhao, X.; Tang, D.; Wu, Y.; Chen, S.; Wang, C. An Artificial Cell System for Biocompatible Gene Delivery in Cancer Therapy. Nanoscale 2020, 12, 10189−10195.
[260] Duan, L.; Xu, L.; Xu, X.; Qin, Z.; Zhou, X.; Xiao, Y.; Liang, Y.; Xia, J. Exosome-Mediated Delivery of Gene Vectors for Gene Therapy. Nanoscale 2021, 13, 1387−1397.
[261] Chang, T. M. S. ARTIFICIAL CELLS: Biotechnology,Nanomedicine, Regenerative Medicine, Blood Substitutes, Bioencapsulation, and Cell/Stem Cell Therapy; World Scientific Publishing Co./ Imperial College Press: London, UK, 2007; p 435.
[262] Wong, H.; Chang, T. M. S. Bioartificial Liver: Implanted Artificial Cells Microencapsulated Living Hepatocytes Increases Survival of Liver Failure Rats. Int. J. Artif. Organs 1986, 9, 335−336.
[263] Hunkeler, D.; Rajotte, R.; Grey, D.; Morel, Ph.; Skjak-Break, G.; Korbutt, G.; Gill, R.; Oberholzer, J. Bioartificial Organ Grafts: A View at the Beginning of the Third Millennium. Artif. Cells Blood Substit. Immobil. Biotechnol. 2003, 31, 365.
[264] Rokstad, A. M. A.; Lacík, I.; de Vos, P.; Strand, B. L. Advances in Biocompatibility and Physico-Chemical Characterization of Microspheres for Cell Encapsulation. Adv. Drug Delivery Rev. 2014, 67, 111−130.
[265] Chang, T. M. S. Selected Topics in Nanomedicine; World Science Publishing Co./Imperial College Press: London, UK, 2014.
[266] Prakash, S.; Chang, T. M. S. Microencapsulated Genetically Engineered Live E. coli DH5 Cells Administered Orally to Maintain Normal Plasma Urea Level in Uremic Rats. Nat. Med. 1996, 2, 883− 887.
[267] Iqbal, U.; Westfall, S.; Prakash, S. Novel Microencapsulated Probiotic Blend for Use in Metabolic Syndrome: Design and in-vivo Analysis. Artif. Cells Nanomed. Biotechnol. 2018, 46, S116−S124.
[268] Liu, Z. C.; Chang, T. M. S. Transdifferentiation of Bioencapsulated Bone Marrow Cells into Hepatocyte-Like Cells in the 90% Hepatectomized Rat Model. Liver Transpl. 2006, 12, 566− 572.
[269] Grant, R.; Hay, D.; Callanan, A. From Scaffold to Structure: The Synthetic Production of Cell Derived Extracellular Matrix for Liver Tissue Engineering. Biomed. Phys. Eng. Express 2018, 4, 065015.
[270] Tsai, R. K.; Rodriguez, P. L.; Discher, D. E. Self Inhibition of Phagocytosis: The Affinity of ‘Marker of Self’ CD47 for Sirpalpha Dictates Potency of Inhibition But Only at Low Expression Levels. Blood Cells Mol. Dis. 2010, 45, 67−74.
[271] Rodriguez, P. L.; Harada, T.; Christian, D. A.; Pantano, D. A.; Tsai, R. K.; Discher, D. E. Minimal “Self” Peptides That Inhibit Phagocytic Clearance and Enhance Delivery of Nanoparticles. Science 2013, 339, 971−975.
[272] Sunshine, J. C.; Perica, K.; Schneck, J. P.; Green, J. J. Particle Shape Dependence of CD8+ T Cell Activation by Artificial Antigen Presenting Cells. Biomaterials 2014, 35, 269−277.
[273] Song, S.; Jin, X.; Zhang, L.; Zhao, C.; Ding, Y.; Ang, Q.; Khaidav, O.; Shen, C. PEGylated and CD47-Conjugated Nanoellipsoidal Artificial Antigen-Presenting Cells Minimize Phagocytosis and Augment Anti-Tumor T-Cell Responses. Int. J. Nanomed. 2019, 14, 2465−2483.
[274] Yang, W.; Deng, H.; Zhu, S.; Lau, J.; Tian, R.; Wang, S.; Zhou, Z.; Yu, G.; Rao, L.; He, L.; Ma, Y.; Chen, X. Size-Transformable Antigen-Presenting Cell-Mimicking Nanovesicles Potentiate Effective Cancer Immunotherapy. Sci. Adv. 2020, 6, No. eabd1631.
[275] Chang, T. M. S. Artificial Cell Evolves into Nanomedicine, Biotherapeutics, Blood Substitutes, Drug Delivery, Enzyme/Gene Therapy, Cancer Therapy, Cell/Stem Cell Therapy, Nanoparticles, Liposomes, Bioencapsulation, Replicating Synthetic Cells, Cell Encapsulation/Scaffold, Biosorbent/Immunosorbent Haemoperfusion/Plasmapheresis, Regenerative Medicine, Encapsulated Microbe, Nanobiotechnology, Nanotechnology. Artif. Cells Nanomed. Biotechnol. 2019, 47, 997−1013.
[276] Bedau, M. A.; McCaskill, J. S.; Packard, N. H.; Rasmussen, S. Living Technology: Exploiting Life’s Principles in Technology. Artif. Life 2010, 16, 89−97.
[277] Pick, H.; Alves, A. C.; Vogel, H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem. Rev. 2018, 118, 8598−8654.
[278] Good, M.; Trepat, X. Cell Parts to Complex Processes, From the Bottom Up. Nature 2018, 563, 188−189.
(参考文献可上下滑动查看)
自生成结构读书会报名中
推荐阅读
人工细胞:自上而下创造生命 | 集智百科 人类终极挑战:赋予人造细胞生命,全人工细胞实现临近 从生命起源到流行病:复杂系统中的多尺度涌现现象 《张江·复杂科学前沿27讲》完整上线! 成为集智VIP,解锁全站课程/读书会 加入集智,一起复杂!